1. Given

\[f(x) = \begin{cases}
-4, & x < -2 \\
-x^2, & -2 \leq x < 0 \\
x^3, & x \geq 0
\end{cases} \]

Find each of the following:

a) \(f(-2) = -4 \) \(f(0) = 0 \) \(f(-5) = -4 \)

b) Graph the \(f(x) \)

c) Where is \(f(x) \) increasing? \((-2, \infty)\)

d) Where is \(f(x) \) decreasing? \(-\infty, -2\)

e) Where is \(f(x) \) constant? \([-2, 0]\)

f) Is \(f(x) \) continuous? \(\text{yes}\)

2. Given \(k(x) = \begin{cases}
\sqrt{x-3} + 1, & \text{if } x > 4 \\
-(x+2)^2, & \text{if } -3 \leq x \leq 1 \\
-3, & \text{if } x < -5
\end{cases} \)

a) Graph the \(k(x) \)

b) Where is \(k(x) \) increasing? \((-3, 2) \cup (3, \infty)\)

c) Where is \(k(x) \) decreasing? \((-2, 1)\)

d) Where is \(k(x) \) constant? \((-\infty, -5)\)

e) Where is the relative max? \(x = -2\)

f) What is the relative max? \(0\)

g) Is \(k(x) \) continuous? \(\text{no}\)
Verify algebraically whether each function is even, odd, or neither. (Show work)

3. \(f(x) = 2x^2 + 5 \)
 \[f(-x) = 2(-x)^2 + 5 \]
 \[f(-x) = 2x^2 + 5 \]
 \[f(x) = f(-x) \] **Even**

4. \(g(x) = -x^3 - 4x + 1 \)
 \[g(-x) = -(x)^3 - 4(-x) + 1 \]
 \[g(-x) = -x^3 + 4x + 1 \]

 neither

5. \(h(x) = x^3 + 2x \)
 \[h(-x) = (-x)^3 + 2(-x) \]
 \[h(-x) = -x^3 - 2x \]
 \[h(-x) = -h(x) \] **Odd**

6. \(f(x) = 2|x| - 4 \)
 \[f(-x) = 2|-x| - 4 \]
 \[f(-x) = 2|x| - 4 \]
 \[f(-x) = f(x) \] **Even**

7. \(g(x) = \sqrt[3]{2x} \)
 \[g(-x) = \sqrt[3]{2(-x)} \]
 \[g(-x) = \sqrt[3]{-2x} \]
 \[g(-x) = -g(x) \] **Odd**

8. \(h(x) = \sqrt{x} + 6 \)
 \[h(-x) = \sqrt{-x} + 6 \]
 \[h(-x) = \sqrt{x} + 6 \]
 neither

9. Finish the graph given the symmetry.

 a. x-axis
 b. origin
 c. y-axis

Given the graph of \(f(x) \) above, answer the following:

a) Domain: \((-\infty, 0) \cup (0, \infty) \)
 Range: \((-\infty, 1] \)

b) Where is \(f(x) \) increasing? \((-\infty, -2) \)

c) Where is \(f(x) \) decreasing? \((2, \infty) \)

d) Where is \(f(x) \) constant? \([-2, 2] \)

e) Is \(f(x) \) even, odd or neither? **Even**

f) Find \(f(4) = \frac{1}{16} \)

g) What value(s) of \(x \) is \(f(x) = -3 \)? \(-6 \) or \(6 \)

h) Is \(f(x) \) continuous? **Yes**